Latent Template Induction with Gumbel-CRFs

Yao Fu¹, Chuanqi Tan², Bin Bi², Mosha Chen², Yansong Feng³, Alexander M. Rush⁴ ¹University of Edinburgh,²Alibaba Group,³Peking University,⁴Cornell University NeurIPS 2020

Goal: Controllable Text Generation with Latent Templates

- Use templates *z* to control the structure of sentence *x*
- Infer z with linear-chain CRF
- Efficiently train *z* with reparameterized MC grad

 $\overline{\nabla_{\phi}} \mathbb{E}_{q_{\phi}(z|x)}[\log p(x|z)] \quad \# \text{ Goal of MC grad.}$

 $= \mathbb{E}_{q_{\phi}(z|x)}[\log p(x|z) \cdot \nabla_{\phi} \log q(z|x)]$ # High var. hard to train Reward Score

$$= \mathbb{E}_{g(\epsilon)} [\nabla_z \log p(x \mid z) \quad \odot \quad \nabla_{\phi} \tilde{z}(\epsilon, \phi)]$$

Continuous Relaxation # How to?Large recent ML/ NLP trendQuite challenging from many aspects

Gumbel-CRF Reparameterization

- Apply Gumbel to each FFBS step to get soft sample \tilde{z}_t
- Use Argmax to recover hard sample \hat{z}_t

Gumbel-CRF

Algorithm 1 Forward Filtering Backward Sampling

- Conventional FFBS: each sample step (Alg. 1, line 3, 6) in FFBS is a categorical sample
- Gumbel-CRF: relax each categorical sample step w. Gumbel-Softmax (Alg. 2, line 4, 8)
- Recover exact hard sample: same as Gumbel-Max (Alg. 2, line 5, 9)
- Stepwise gradient: backprop. through each z_t v.s. seq level grad. in REINFORCE

Stepwise Gradients w. Gumbel-CRF

REINFORCE gives seq level grad

Gumbel-CRF induces stepwise grad

Alternative: REINFORCE

Estimators	Score /Reparam.	Seq. Level/ Stepwise	Unbiased MC Sample	Unbiased Grad.
REINFORCE-MS	Score	Seq.	Unbiased	Unbiased
REINFORCE-MS-C	Score	Seq.	Unbiased	Unbiased
PM-MRF	Reparam.	Step	Biased	Biased
PM-MRF-ST	Reparam.	Step	Biased	Biased
Gumbel-CRF	Reparam.	Step	Biased	Biased
Gumbel-CRF-ST	Reparam.	Step	Unbiased	Biased

(A) Characteristics of the estimators we compare

More estimators and detailed comparison in Appendix

Gradient of REINFORCE: $\nabla_{\phi} \mathbb{E}_{q_{\phi}(z|x)}[\log p(x, z)] = \mathbb{E}_{q_{\phi}(z|x)}[\log p(x, z) \nabla_{\phi} \log q_{\phi}(z|x)]$

Gradient of Gumbel-CRF: $\nabla_{\phi} \mathbb{E}_{q_{\phi}(z|x)}[\log p(x, z)] = \mathbb{E}_{q_{\phi}(z|x)}[\Sigma_{i} \nabla_{\tilde{z}_{i}} \log p(x, z) \odot \nabla_{\phi} \tilde{z}_{i}]$

VAE w. Gumbel-CRF

- Generative model autoregressive w.r.t. x and z (Li and Rush 2020)
- Inference model relaxed w. Gumbel-CRF

As a reparam.ed grad. estimator: density estimation

Table 1: Density Estimation Results. NLL is estimated with 100 importance samples. Models are selected from 3 different random seeds based on validation NLL. All metrics are evaluated on the discrete (exact) model.

Model	Neg. ELBO	NLL	PPL	Ent.	#sample
RNNLM	34.69	4.94	-	-	
PM-MRF	69.15	50.22	10.41	4.11	1
PM-MRF-ST	53.16	37.03	5.48	2.04	1
REINFORCE-MS	35.11	34.50	4.84	3.48	5
REINFORCE-MS-C	34.35	33.82	4.71	3.34	5
Gumbel-CRF (ours)	38.00	35.41	4.71	3.03	1
Gumbel-CRF-ST (ours)	34.18	33.13	4.54	3.26	1

- Gumbel-CRF ST version achieves best NLL and PPL w. less sample than baseline REINFORCE.

- Less variance than REINFORCE, more stable training

As a structured inference network: paraphrasing and data-to-text

Table 2: Paraphrase Generation. Upper: supervised models, Lower: unsupervised models. Models are selected from 5 random seeds based validation iB4.

iB4	B2	B3	B4	R1	R2	RL
-	51.14	35.66	25.27	42.08	16.13	38.16
7.48	24.90	13.04	7.29	22.05	4.64	26.05
7.84	-	-	11.45	32.19	8.67	-
9.26	-	-	14.16	37.18	11.21	-
11.20	41.29	26.54	17.10	32.57	10.20	34.97
10.20	38.98	24.65	15.75	31.10	9.24	33.60
	iB4 - 7.48 7.84 9.26 11.20 10.20	iB4B2-51.147.4824.907.84-9.26-11.2041.2910.2038.98	iB4B2B3-51.1435.667.4824.9013.047.849.2611.2041.2926.5410.2038.9824.65	iB4B2B3B4-51.1435.6625.277.4824.9013.047.297.8411.459.2614.1611.2041.2926.5417.1010.2038.9824.6515.75	iB4B2B3B4R1-51.1435.6625.2742.087.4824.9013.047.2922.057.8411.4532.199.2614.1637.1811.2041.2926.5417.1032.5710.2038.9824.6515.7531.10	iB4B2B3B4R1R2-51.1435.6625.2742.0816.137.4824.9013.047.2922.054.647.8411.4532.198.679.2614.1637.1811.2111.2041.2926.5417.1032.5710.2010.2038.9824.6515.7531.109.24

Table 3: Data-to-text generation results. Upper: neural models, Lower: template-related models. Models are selected from 5 different random seeds based on validation BLEU.

Model	BLEU	NIST	ROUGE	CIDEr	METEOR
D&J[13]	65.93	8.59	68.50	2.23	44.83
KV2Seq[14]	74.72	9.30	70.69	2.23	46.15
SUB[13]	43.78	6.88	54.64	1.39	37.35
HSMM[62]	55.17	7.14	65.70	1.70	41.91
HSMM-AR[62]	59.80	7.56	65.01	1.95	38.75
SM-CRF PC [33]	67.12	8.52	68.70	2.24	45.40
Ours trained w. REINFORCE	60.41	7.99	62.54	1.78	38.04
Ours trained w. Gumbel-CRF	65.83	8.43	65.06	1.98	41.44

- Our model trained w. Gumbel-CRF performs similar to or better than REINFORCE
- Either way our model outperforms baselines

Practical Benefits and Controllable Generation

Table 4: Practical benefits of using Gumbel-CRF. Typically, REINFORCE has a long list of parameters to tune: h entropy regularization, b_0 constant baseline, b baseline model, r reward scaling, #s number of MC sample. Gumbel-CRF reduces the engineering complexity with significantly less parameters to tune (h entropy regularization, τ temperature annealing), less sample required (thus less memory consumption), and less time consumption. Models tested on Nvidia P100 with batch size 100.

Model	Hyperparams.	#s	GPU mem	Sec. per batch
REINFORCE	$h, b_0, b, r, \#s$	5	1.8G	1.42
Gumbel-CRF	h, au	1	1.1G	0.48

name: clowns | eattype: coffee shop | food: chinese | customer_rating: 1 out of 5 | area: riverside | near: clare hall

- 1. [there is a]₂₀ [coffee shop]₃₅ [in the]₉ [riverside]₃₅ [area ,]₁₂ [serves]₂₀ [chinese]₃₅ [food]₁₂ [. it is]₂₀ [called]₃₅ [clowns]₄₄ [. is]₂₀ [near]₃₅ [clare hall]₄₄ [. It has a customer rating]₂₀ [of 1 out of 5]₈ [.]₂₀
- 2. [clowns]₄₄ [is a]₂₀ [expensive]₁₂ [coffee shop]₃₅ [located]₁₂ [in]₉ [riverside]₃₅ [area]₁₂ [.]₂₀

3. $[clowns]_{44}$ [is a]₂₀ [coffee shop]₃₅ [in the riverside]₂₀ [. it is]₂₀ [family friendly]₂ [and has a]₂₀ [1]₄₅ [out of 5]₈ [stars]₁₂ [rating .]₂₀

name: browns cambridge | eattype: coffee shop | food: chinese | customer_rating: 1 out of 5 | area: riverside | familyfriendly: yes | near: crowne plaza hote

- 1. [browns cambridge]₄₄ [offers]₁₂ [chinese]₃₅ [food]₁₂ [near]₃₅ [crowne plaza hotel]₄₄ [in]₃₅ [riverside]₉ [. it is a]₂₀ [coffee shop]₃₅ [, not children friendly]₁₂ [and has a]₂₀ [5]₄₅ [out of 5]₈ [rating .]₂₀
- 2. [there is a]₂₀ [moderately priced restaurant]₂ [that serves]₂₀ [chinese]₃₅ [food]₁₂ [called]₃₅ [browns cambridge]₄₄ [coffee]₉ [. it has a customer rating]₂₀ [of 5 out of 5.]₈ [it is]₂₀ [not family-friendly]₁₂ [. it is]₂₀ [located]₁₂ [near]₃₅ [crowne plaza]₄₄
- 3. [browns cambridge]₄₄ [is a]₂₀ [chinese coffee shop]₃₅ [located]₁₂ [in]₉ [riverside near]₃₅ [crowne plaza hotel]₄₄ [. it has a]₂₀ [customer rating]₂₀ [of 5 out of]₈ [5]₄₄ [and is]₂₀ [not family-friendly]₂ [.]₂₀

Figure 4: Controllable generation with templates.

Template Interpretability

Bigram	Sentence Segments	4gram	Sentence Segments	
(A) 12-35	1. located near	(D) 35-44-12-20	1. near the city center	
	2. restaurant near		2. near café rouge, there is a	
	3. restaurant located near		3. in the city center, it is	ngrams w. semantically
(B) 20-8	1. has a customer rating of	(E) 44-20-35-20	1. french food at a moderate	similar segments
	2. has a customer rating of 5 out of		2. french food for a moderate	
	3. and with a customer rating of		3. fast food restaurant with a moderate	
(C) 20-12	1. is located	(F) 12-20-12-20	1. food with a price range of	ngrams w. semantically
	2. is a family friendly		2. price range and family friendly	different segments

Figure 5: Analysis of state ngrams. State ngrams correlate to sentence meaning. In cases (A, B, D, E), semantically similar sentence segments are clustered to the same state ngrams: (A) "location" (B) "rating" (D) "location" (E) "food" and "price". Yet there are also cases where state ngrams correspond to sentence segments with different meaning: (C1) "location" v.s. (C2) "comments"; (F1) "price" v.s. (F2) "price" and "comments".

Learning latent templates for controllable text generation w. Gumbel-CRFs

Faster, more stable training than REINFORCE w. better density estimation

Models trained w. Gumbel-CRF perform similar to or better than same model trained w. REINFORCE w.r.t. end performance, interpretability and controllability

Applicable to models involving middle-layer CRFs, anther interesting direction would be joint entity recognition and relation classification

Code: <u>https://github.com/FranxYao/Gumbel-CRF</u>

Thanks!